Academic Council

Item No: _____

B. Sc. General (Semester Pattern) B. Sc. First Year MATHEMATICS – CURRICULUM

C		Domon	Lectures		Marks		
Semester	Paper Code	Paper	/Practicals	External	Internal	Total	Creatts
Semester I	ASPUSMT101	Theory Paper I - Calculus I	45	70	30	100	02
	ASPUSMT102	Theory Paper II – Algrbra I	45	70	30	100	02
	ASPUSMTP01	Practical Paper I	09	35	15	50	01
	ASPUSMT201	Theory Paper I - Calculus II	45	70	30	100	02
Semester II	ASPUSMT202	Theory Paper II – Algrbra II	45	70	30	100	02
	ASPUSMTP02	Practical Paper II	09	35	15	50	01

Learning Objectives: The students will be able to understand- Outline the concepts of limits and continuity.Analyze the properties of continuous functions.Identify differentiable functions.Analyze properties of differentiable functions.Analyze properties of differentiable functions.Course Code AsPUSMT 101UnitLecturesCreditUnitCalculus I4502UnitReal number system Rand order properties of R, absolute value and its properties.2.AM-GM inequality, Cauchy-Schwarz inequality, Intervals and neighbourhoods, Hausdorff property.Number System3.Bounded sets, statements of Lub. axiom and its consequences, Supremum and infimum, Maximum and minimum, Archimedean property and its applications, density of rationals.15Unit II Limit and continuity of functions of one variable1.Definition of Limit $\lim_{x \to a^{-1}} f(x)$ of a function $f(x)$ evaluation of limits, limit of it exists, algebra of limits, limit of composite functions. Subsorthuous function, aset in terms of limits, examples, continuity of a real valued function a set in terms of limits, examples, continuity of a real valued function, Algebra of continuous functions, Discontinuous function, examples of removable and essential discontinuity. Intermediate value theorem and it's applications, Bolzano- Weierstrass theorem (statement only): A continuous function on a closed and bounded interval is bounded and attains its bounds.		Semester I Theory Paper I		
The students will be able to understand-• Outline the concepts of limits and continuity.• Analyze the properties of continuous functions.• Identify differentiable functions.• Analyze properties of differentiable functions.• Course Code ASPUSMT 101• Calculus ILecturesCreditUnitCalculus I4502InitCalculus I4502InitReal and neighbourhoods, Hausdorff properties of R, absolute value and its properties.152.AM-GM inequality, Cauchy-Schwarz inequality, Intervals and neighbourhoods, Hausdorff property.153.Bounded sets, statements of Lu.b. axiom and its consequences, Supremum and infimum, Maximum and minimum, Archimedean property and its applications, density of rationals.15Unit II Limit and continuity of functions of one variable1. Definition of Limit lim $_{x \rightarrow a} f(x)$ of a function $f(x)$ evaluation of limits , limit of simple functions using the $e - \delta definition,$ uniqueness of limit if it exists, algebra of limits, limit of composite functions: Continuity of real valued function on a set in terms of limits, examples, continuity of a real valued function at end points of domain, Algebra of continuous functions, Discontinuous functions, examples of removable and essential discontinuity. Intermediate value theorem and it's applications, Bolzano- Weierstrast theorem (statement only): A continuous function on a closed and bounded interval is bounded and attains its bounds.15	Learning Ob	jectives:		
• Outline the concepts of nimits and continuity.• Analyze the properties of continuous functions.• Identify differentiable functions.• Analyze properties of differentiable functions.• Course Code ASPUSMTItertureLecturesCredit01UnitUnitCalculus I450203101UnitCalculus I101Unit I Real Number System2. AM-GM inequality, Cauchy-Schwarz inequality, Intervals and neighbourhoods, Hausdorff property.3. Bounded sets, statements of Lu.b. axiom and its consequences, Supremum and infimum, Maximum and minimum, Archimedean property and its applications, density of rationals.Unit II Limit and continuity1. Definition of Limit $\lim_{x\to a} f(x)$ of a function $f(x)$ evaluation of limit of simple functions using the $\varepsilon - \delta$ definition, uniqueness of limit if it exists, algebra of limits, limit of composite function, sandwich theorem, left-hand-limit lim _{x +ac^-1} f(x)right hand limit $\lim_{x\to ac} f(x)$ and $\lim_{x\to ac} f(x) = \infty$.2. Continuous functions: Continuity of real valued function a set in terms of limits, examples, continuity of a real valued functions, examples of continuous functions, Discontinuous functions, examples of continuous functions, examples of conti	The students v	vill be able to understand-		
• Analyze the properties of continuous functions.• Identify differentiable functions.• Analyze properties of differentiable functions.• Code ASPUSMTTitleLecturesCredit101010202Unit I Real Number SystemReal number system Rand order properties of R, absolute value and its properties.45022. AM-GM inequality, Cauchy-Schwarz inequality, Intervals and neighbourhoods, Hausdorff property.153. Bounded sets, statements of Lu.b. axiom and its consequences, Supremum and infimum, Maximum and minimum, Archimedean property and its applications, density of rationals.15Unit II Limit and continuity of functions of one variable1. Definition of Limit $\lim_{x \to a} f(x)$ of a function $f(x)$ evaluation of limit of simple functions, sadwich theorem, left-hand-limit $\lim_{x \to a^{-1}} f(x)$ right hand limit $\lim_{x \to a^{+1}} f(x)$ non existence of limits , $\lim_{x \to -\infty} f(x)$, $\lim_{x \to \infty} f(x)$ and $\lim_{x \to a} f(x) = \infty$.152. Continuous functions: Continuity of a real valued function at end points of domain, Algebra of continuous functions, Discontinuous functions, examples of removable and essential discontinuity. Intermediate value theorem and it's applications, Bolzano- Weierstrass theorem (statement only): A continuous function on a closed and bounded interval is bounded and attains its bounds.15		• Outline the concepts of limits and continuity.		
• Identify differentiable functions.• Analyze properties of differentiable functions.Course Code ASPUSMT 101IteLecturesCreditUnitCalculus I4502Unit I Real Number System2. AM-GM inequality, Cauchy-Schwarz inequality, Intervals and neighbourhoods, Hausdorff property.153. Bounded sets, statements of Lu.b. axiom and its consequences, Supremum and infimum, Maximum and minimum, Archimedean property and its applications, density of rationals.15Unit II Limit and coff functions of functions of limit of simple functions using the $\varepsilon - \delta$ definition, uniqueness of limit if it exists, algebra of limits, lim $x \to \sigma f(x)$, lim $x \to \infty f(x)$ and lim $x \to \sigma f(x)$ and lim x		 Analyze the properties of continuous functions. Identify differentiable functions. 		
Course Code ASPUSMT 101TitleLecturesCreditUnitCalculus I4502Unit I Real Number System1. Real number system Rand order properties of R, absolute value and its properties.45022.AM-GM inequality, Cauchy-Schwarz inequality, Intervals and neighbourhoods, Hausdorff property.153.Bounded sets, statements of Lu.b. axiom and its consequences, Supremum and infimum, Maximum and minimum, Archimedean property and its applications, density of rationals.15Unit II Limit and continuity of functions of one variable1.Definition of Limit $\lim_{x\to a} f(x)$ of a function $f(x)$ evaluation of limit of simple functions using the $\varepsilon - \delta$ effinition, uniqueness of limit if it exists, algebra of limits, limit of composite function, sandwich theorem, left-hand-limit $\lim_{x\to a^{-1}} f(x)$ right hand limit $\lim_{x\to a^{+1}} f(x)$ non existence of limits, $\lim_{x\to a^{-1}} f(x)$ right hand limit $\lim_{x\to a} f(x)$ and $\lim_{x\to a} f(x) = \infty$.152.Continuous functions: Continuity of real valued function on a set in terms of limits, examples, continuous functions, examples of removable and essential discontinuous unction a closed and bounded interval is bounded and attains its bounds.15		 Identify differentiable functions. Analyza properties of differentiable functions. 		
Code ASPUSMT 101TitleLecturesCreditUnitCalculus I4502Unit I Real Number System1. Real number system Rand order properties of R, absolute value and its properties.45022. AM-GM inequality, Cauchy-Schwarz inequality, Intervals and neighbourhoods, Hausdorff property.15153. Bounded sets, statements of Lu.b. axiom and its consequences, Supremum and infimum, Maximum and minimum, Archimedean property and its applications, density of rationals.15Unit II Limit and continuity of functions of functions1Definition of Limit $\lim_{x\to a} f(x)$ of a function $f(x)$ evaluation of limit of simple functions using the $\varepsilon - \delta$ definition, uniqueness of limit if it exists, algebra of limits, limit of composite function, sandwich theorem, left-hand-limit lim $_{x\to a^{-1}} f(x)$ right hand limit $\lim_{x\to a^+} f(x)$ and $\lim_{x\to a} f(x) = \infty$.152. Continuous functions: Continuity of real valued function on a set in terms of limits, examples, continuous functions, examples of removable and essential discontinuous unction at end points of domain, Algebra of continuous functions, Biozano- Weierstrass theorem (statement only): A continuous function on a closed and bounded interval is bounded and attains its bounds.15	Course	• Anaryze properties of unrefentiable functions.		
ASPUSMT 101TitleLecturesCreditUnitCalculus I4502Unit I Real Number System1. Real number system Rand order properties of R, absolute value and its properties.45022.AM-GM inequality, Cauchy-Schwarz inequality, Intervals and neighbourhoods, Hausdorff property.153.Bounded sets, statements of Lu.b. axiom and its consequences, Supremum and infimum, Maximum and minimum, Archimedean property and its applications, density of rationals.15Unit II Limit and continuity of functions of one variable1. Definition of Limit $\lim_{x\to a} f(x)$ of a function $f(x)$ evaluation of limit of simple functions using the $\varepsilon - \delta$ definition, uniqueness of limit if it exists, algebra of limits, limit of composite function, sandwich theorem, left-hand-limit $\lim_{x\to a^{-1}} f(x)$ right hand limit $\lim_{x\to a^{+1}} f(x)$ non existence of limits, $\lim_{x\to\infty} f(x)$, $\lim_{x\to\infty} f(x)$ and $\lim_{x\to a} f(x) = \infty$.152.Continuous functions: Continuity of real valued function on a set in terms of limits, examples, continuity of a real valued function at end points of domain, Algebra of continuous functions, Discontinuous functions, examples of removable and essential discontinuity. Intermediate value theorem (statement only): A continuous function on a closed and bounded interval is bounded and attains its bounds.15	Code		_	~
101Calculus I4502UnitReal number system Rand order properties of R, absolute value and its properties.1.Real number system Rand order properties of R, absolute value and its properties.1.Unit I Real Number System2.AM-GM inequality, Cauchy-Schwarz inequality, Intervals and neighbourhoods, Hausdorff property.153.Bounded sets, statements of Lu.b. axiom and its consequences, Supremum and infimum, Maximum and minimum, Archimedean property and its applications, density of rationals.15Unit II Limit and continuity of functions of one variable1.Definition of Limit $\lim_{x\to a} f(x)$ of a function $f(x)$ evaluation of limit of simple functions using the $\varepsilon - \delta$ definition, uniqueness of limit if it exists, algebra of limits, limit of composite function, sandwich theorem, left-hand-limit $\lim_{x\to a^{-1}} f(x)$ right hand limit $\lim_{x\to a} f(x)$ and $\lim_{x\to a} f(x) = \infty$.152.Continuous functions: Continuity of real valued function on a set in terms of limits, examples, continuity of a real valued function at end points of domain, Algebra of continuous functions, Discontinuous functions, examples of removable and essential discontinuity. Intermediate value theorem (statement only): A continuous function on a closed and bounded interval is bounded and attains its bounds.15	ASPUSMT	Title	Lectures	Credits
UnitCalculus I4502Unit I Real Number System1. Real number system Rand order properties of R, absolute value and its properties.1. Real number system Rand order properties of R, absolute value and its properties.1.2.AM-GM inequality, Cauchy-Schwarz inequality, Intervals and neighbourhoods, Hausdorff property.153.Bounded sets, statements of Lu.b. axiom and its consequences, Supremum and infimum, Maximum and minimum, Archimedean property and its applications, density of rationals.15Unit II Limit and continuity1. Definition of Limit $\lim_{x\to a} f(x)$ of a function $f(x)$ evaluation of limit of simple functions using the $\varepsilon - \delta$ definition, uniqueness of limit if it exists, algebra of limits, limit of composite function, sandwich theorem, left-hand-limit $\lim_{x\to a^{-1}} f(x)$ right hand limit $\lim_{x\to a^{+1}} f(x)$ non existence of limits , $\lim_{x\to a^{-1}} f(x)$, lim $_{x\to \infty} f(x)$ and $\lim_{x\to a} f(x) = \infty$.152.Continuous functions: Continuity of real valued function on a set in terms of limits, examples, continuity of a real valued function at end points of domain, Algebra of continuous functions, Discontinuous functions, examples of removable and essential discontinuity. Intermediate value theorem and it's applications, Bolzano- Weierstrass theorem (statement only): A continuous function on a closed and bounded interval is bounded and attains its bounds.15	101			
Unit I Real 1. Real number system ℝand order properties of ℝ, absolute value and its properties. 1. Unit I Real 2. AM-GM inequality, Cauchy-Schwarz inequality, Intervals and neighbourhoods, Hausdorff property. 15 3. Bounded sets, statements of Lu.b. axiom and its consequences, Supremum and infimum, Maximum and minimum, Archimedean property and its applications, density of rationals. 15 Unit II Limit and continuity 1. Definition of Limit lim _{x→a} f(x) of a function f(x) evaluation of limit of simple functions using the ε – δdefinition, uniqueness of limit if it exists, algebra of limits, limin, direction sof composite function, sandwich theorem, left-hand-limit lim _{x→a} f(x) and lim _{x→a} f(x) = ∞. 15 2. Continuous functions: Continuity of real valued function on a set in terms of limits, examples, continuity of a real valued function at end points of domain, Algebra of continuous functions, Discontinuous functions, examples of removable and essential discontinuity. Intermediate value theorem and it's applications, Bolzano- Weierstrass theorem (statement only): A continuous function on a closed and bounded interval is bounded and attains its bounds. 15	Unit	Calculus I	45	02
Unit I Real Number System2. AM-GM inequality, Cauchy-Schwarz inequality, Intervals and neighbourhoods, Hausdorff property.153. Bounded sets, statements of Lu.b. axiom and its consequences, Supremum and infimum, Maximum and minimum, Archimedean property and its applications, density of rationals.15Unit II Limit and continuity of functions of one variable1. Definition of Limit $\lim_{x\to a} f(x)$ of a function $f(x)$ evaluation of limit of simple functions using the $\varepsilon - \delta$ definition, uniqueness of limit if it exists, algebra of limits, limit of composite function, sandwich theorem, left-hand-limit $\lim_{x\to a^{-1}} f(x)$ right hand limit $\lim_{x\to a^{+1}} f(x)$ non existence of limits, $\lim_{x\to -\infty} f(x)$, $\lim_{x\to\infty} f(x)$ and $\lim_{x\to a} f(x) = \infty$.152. Continuous functions: Continuity of real valued function on a set in terms of limits, examples, continuity of a real valued functions, examples of removable and essential discontinuity. Intermediate value theorem and it's applications, Bolzano- Weierstrass theorem (statement only): A continuous function on a closed and bounded interval is bounded and attains its bounds.15		 Real number system Rand order properties of R, absolute value and its properties. 		
Number System3. Bounded sets, statements of Lu.b. axiom and its consequences, Supremum and infimum, Maximum and minimum, Archimedean property and its applications, 	Unit I Real	2. AM-GM inequality, Cauchy-Schwarz inequality, Intervals and neighbourhoods, Hausdorff property.	15	
Unit II Limit and continuity1. Definition of Limit $\lim_{x \to a} f(x)$ of a function $f(x)$ evaluation of limit of simple functions using the $\varepsilon - \delta$ definition, 	Number System	3. Bounded sets, statements of I.u.b. axiom and its consequences, Supremum and infimum, Maximum and minimum, Archimedean property and its applications, density of rationals.	15	
2. Continuous functions: Continuity of real valued function on a set in terms of limits, examples, continuity of a real valued function at end points of domain, Algebra of continuous functions, Discontinuous functions, examples of removable and essential discontinuity. Intermediate value theorem and it's applications, Bolzano-Weierstrass theorem (statement only): A continuous function on a closed and bounded interval is bounded and attains its bounds.	Unit II Limit and continuity of functions of one variable	 Definition of Limit lim_{x→a} f(x) of a function f(x) evaluation of limit of simple functions using the ε – δdefinition, uniqueness of limit if it exists, algebra of limits, limit of composite function, sandwich theorem, left-hand-limit lim_{x→a⁻¹} f(x)right hand limit lim_{x→a⁺¹} f(x)non existence of limits, lim_{x→-∞} f(x), lim_{x→∞} f(x) and lim_{x→a} f(x) = ∞. 		
		2. Continuous functions: Continuity of real valued function on a set in terms of limits, examples, continuity of a real valued function at end points of domain, Algebra of continuous functions, Discontinuous functions, examples of removable and essential discontinuity. Intermediate value theorem and it's applications, Bolzano-Weierstrass theorem (statement only): A continuous function on a closed and bounded interval is bounded and attains its bounds.	15	
Unit III1. Differentiation of real valued function of one variable: Definition of differentiation at a point of an open interval, examples of differentiable and non-differentiable, first principal of derivative, algebra of derivative.1515151515	Unit III Differentia bility of functions of one variable	 Differentiation of real valued function of one variable: Definition of differentiation at a point of an open interval, examples of differentiable and non-differentiable, first principal of derivative, algebra of derivative. Differentiable functions are continuous but not conversely 	15	

chain rule ,Higher order derivatives, Leibnitz rule, Derivative of inverse functions, Implicit differentiation (only examples)	
1.	

	Semester I Theory Paper II		
Learning Ob	jectives:		
The students v	will be able to understand-		
	• Learner will be able to experiment with divisibility of integers.		
	• Learner will be able to explain concept of functions and equiva	alence relation	ons.
	• Learner will be able to explain the properties of polynomials o	ver R and C.	
Course Code ASPUSMT 102	Title	Lectures	Credits
Unit	Algebra I	45	02
Unit I Integers & Divisibility	 Statements of Well-ordering property of non-negative integers, Principle of ginite induction (first and second) as a consequence of well- ordering property. Binomial theorem for non- negative exponents, Pascal Triangle. Divisibility in integers, division algorithm, greatest common divisor (g.c.d.) and least common multiple (l.c.m.) of two integers, basic properties of g.c.d. Such as existence and uniqueness of g.c.d. of integers a & b and that the g.c.d. can be expressed as ma + nb for some m, n ∈ Z, Euclidean algorithm, Primes, Euclid's lemma. Fundamental Theorem of arithmetic, The set of primes is infinite Congruence, definition and elementary properties, Euler's φ function, statements ofEuler's theorem, Fermat's theorem and Wilson theorem, Applicatios. 	15	
Unit II Functions and Equivalence relations	 Definition of function, domain,co-domain and range of a function, composite functions, examples, direct image f(A) and inverse image f⁻¹(B) for a function f, injective,surjective,bijective functions, Composite of injective, surjective,bijective functions when defined, invertible functions, bijective functions are invertible and conversely examples of functions including constant, identity, projection, inclusion, Binary operation as a function, properties, examples. Equivalence relation, Equivalence classes, properties such as two equivalences classes are either identical or disjoint, definition of partition, every partition gives an equivalence 	15	

	 relation and vice versa. 3. Congruence is an equivalence relation on Z , Addition modulo <i>n</i>, Multiplication modulo n, examples. 		
Unit III Polynomials	 Definition of a polynomial, polynomials over the field where = Q, RorC, Algebra of polynomials, degree of polynomial, basic properties. Division algorithm in [] (without proof), and g.c.d of two polynomials and its basic properties (without proof), Euclidean algorithm (without proof), applications, Roots of a polynomial, relation between roots and coefficients, multiplicity of a root, Remainder theorem, Factor theorem. A polynomial of degree over has at roots, Complex roots of a polynomial in R[x]occur in conjugate pairs, Statement of Fundamental Theorem of Algebra, A polynomial of degree in C[x], has exactly complex roots counted with multiplicity, A non constant polynomial in R[x]can be expressed as a product of linear and quadratic factors in R[x], necessary condition for a rational number to be a root a polynomial with integer coefficients, simple consequences such as is a irrational number where is a prime number, roots of unity, sum of all the roots of unity. 	15	

	Course Code ASPUSMTP01 Semester I Practical Paper I – Calculus I				
Sr No	Draaticals	L	Cr		
Sr.1NO.	Tacticals		01		
1.	Properties of continuous and differentiable functions.Limits of				
	functions using- " ε - δ " definition. (Simple functions recommended in				
	the syllabus).				
2.	Algebra of continuous function.				
3.	Higher order derivatives, Leibnitz theorem. Mean value theorems and				
	its applications.				
4.	Extreme values, increasing and decreasing functions. Applications of				
	Taylor's theorem and Taylor's polynomials.				
5.	Miscellaneous Theoretical Questions based on full paper				

	Course Code ASPUSMTP01 Semester I Practical Paper II – Algebra I					
Sr No	r No Practicals		Cr			
Sr.No. Practicals	Tacucais	30	01			
1.	Mathematical induction Division Algorithm and Euclidean algorithm					
	in, zprimes and the Fundamental theorem of Arithmetic. Convergence					
	and Eulers function, Fermat's little theorem, Euler's theorem and					
	Wilson's theorem,					
2.	Functions (direct image and inverse image), Injective, surjective,					
	bijective functions, finding inverses of bijective functions.					
	Equivalence relation.					
3.	Factor Theorem, relation between roots and coefficients of					
	polynomials, factorization and reciprocal polynomials.					
4.	Miscellaneous Theoretical Questions based on full paper.					

	Semester II Theory Paper I				
 Learning Objectives: The students will be able to understand- Learner will be able to explain the properties of real numbers. Learner will be able to explain the notions of convergent sequences Learner will be able to test the convergence of series 					
Course Code ASPUSMT 201	Title	Lectures	Credits		
	Calculus II	45	02		
Unit I Applications of differentiati on	 Definition of local maximum and local minimum, necessary condition, stationary points, second derivative test, examples, Graphing of functions using first and second derivatives, concave, convex, concave functions, points of inflection. Rolle's theorem, Lagrange's and Cauchy's mean value theorems, applications and examples, Monotone increasing and decreasing function, examples, L-Hospital rule without proof, examples of intermediate forms, Taylor's theorem with Lagrange's form of remainder with proof. Taylor's polynomial and applications 	15			
Unit II Sequences	 Definition of a sequence and examples, Convergence of sequences, every nvergent sequences is bounded. Limit of a convergent sequence and uniqueness of limit, Divergent sequences. Convergence of standard sequences like (1/(1+na)) 	15			

	$\forall a > 0, (b)^n \forall 0 < b < 1, (c^{\frac{1}{n}}) \forall c > 0 \text{ and } (n^{\frac{1}{n}}),$		
	3. Algebra of convergent sequences, sandwich theorem, monotone sequences, monotone convergence theorem and consequences as convergence of $\left(1 + \frac{1}{n}\right)^n$		
	4. Definition of subsequence, subsequence of a convergent sequence is convergent and converges to the same limit, definition of a Cauchy sequences, every convergent sequences s a Cauchy sequence and converse.		
	 Series ∑_{n=1}[∞] a_npf real numbers, simple examples of series, Sequence of partial sums of a series, convergent series, divergent series. Necessary condition :∑_{n=1}[∞] a_n converges ⇒a_n→ 0, but converse is not true, algebra of convergent series, 		
Unit III Series	2. Cauchy criterion, divergence of harmonic series, convergence of $\sum_{n=1}^{\infty} \frac{1}{n^p}$ (P>1), comparison test, limit comparison test, alternating series, Leibnitz's theorem (alternating series test) and convergence of $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$, absolute convergence, conditional convergence, absolute convergence implies convergence but not conversely, Ratio test (without proof), root test(without proof) and examples.	15	

	Semester II Theory Paper II					
Learning Ob	jectives:					
The students v	vill be able to understand-					
•	Learner will be able to experiment with the system of linear equat	tions and ma	trices.			
•	Learner will be able to identify vector spaces.					
•	Learner will be able to explain properties of vector spaces and sub	ospaces.				
•	• Learner will be able to construct basis for a given vector space.					
•	• Learner will be able to explain properties of linear transformation.					
Course						
Code	Title	Lootumog	Credita			
ASPUSMT	Title	Lectures	Creans			
202						
Unit	Algebra II	45	02			
Unit I	1. Parametric Equation of Lines and Planes , System of					
System of	homogeneous and non homogeneous linear Equations, The					
Equations	solution of m homogeneous linear equations in n unknowns	15				
and	by elimination and their geometrical interpretation for (m,					
Matrices	n) = (1,2), (1,3), (2,2), (2,2), (3,3); Definition of n-tuple					

		of real numbers, sum of n-tuples and scalar multiple of n- tuple.		
		Deduce that the system of m homogeneous linear equations has a non trivial solution if $m < n$.		
	2.	Matrices with real entries; addition, scalar multiplication of matrices and multiplication of matrices, transpose of a matrix, types of matrices: zero matrix, identity matrix, scalar matrix, diagonal matrix, upper and lower triangular matrices, symmetric matrix, skew symmetric matrix, invertible matrix; Identities such as $(AB)^t = B^t A^t$, $(AB)^{-1} = B^{-1}A^{-1}$		
	3.	System of linear equations in matrix form, Elemetary row operations, row echelon matrix, Gausian elimination method.		
	1.	Definition of real vector space, Examples such as \mathbb{IR}^n , $IR[x], M_{m \times n}(IR)$ space of real valued functions on a non empty set.		
Unit II Vactor	 2. Subspace: definition, examples: lines , planes passing through origin as subspaces of respectively; upper triangular matrices, diagonal matrices, symmetric matrices, skew-symmetric matrix as subspaces of M_n (IR) (n = 2,3) ; p_n(x)= a₀ + a₁x + a₂x² + + a_nxⁿ , a_i ∈ R , ∀1 ≤ i ≤ n as subpace of , IR[x], the space of allsolutions of the system of m homogeneous linear equations in n unknowns as a subspace of IRⁿ. 			
Spaces	3.	Properties of a subspace such as necessary and sufficient conditions for a non empty subset to be a subspace of a vector space, arbitrary intersection of subspaces of aVector space is a subspace, union of two subspaces is a subspace if and only if one is the subset of other.	15	
	 4. Finite linear combination of vectors in a vector space; lines span L(S) of a non empty subet S of a vector space, S generating set for L(S), L(S) is a vector subspace of Linearly independent/ Linearly Dependent subsets of vector space, a subset {v₁, v₂, v_k}is linear dependent if and only ∃∈ {1,2,k} such that v_i is a line combination of other vectors 's v_j 's. 	Finite linear combination of vectors in a vector space; linear span L(S) of a non empty subet S of a vector space, S is generating set for L(S), L(S) is a vector subspace of V; Linearly independent/ Linearly Dependent subsets of a vector space, a subset $\{v_1, v_2, \dots, v_k\}$ is linearly dependent if and only $\exists \in \{1, 2, \dots, k\}$ such that v_i is a linear combination of other vectors 's v_j 's.		
Unit III Basis of a Vector Space and Linear	1.	Basis of a vector space, dimension of a vector space, maximal linearly independent subset of a vector space is a basis of a vector space, any two basis of a vector space have same number of elements, any set of n linearly independent vectors in an n dimensional vector space is a basis, any	15	

Transformat ion	collection of n+1 vectors in an n-dimensional vector space is linearly dependent.	
	2. Extending any basis of a subspace W of a vector space V to a basis of the vector space V. If W_1 and W_2 , are two subspaces of a vector space V then $W_1 + W_2$ is a subspace, $\dim(W_1 + W_2) = \dim(W_1) + \dim(W_2) - \dim(W_1 \cap W_2)$.	
	 3. Linear Transformations; Kernel, Image of a Linear Transformation T, Rank T, Nullity T, properties such as: kernel T is a subspace of domain space of T and Img T is a subspace of codomain subspace of T. If V= {v₁, v₂,, v_n}is a basis of V and W = {w₁, w₂,, w_n}any vectors in W then there exists a unique linear transformation T: V→ W such that T(v_j) = w_j = ∀ 1 ≤ i ≤ n, Rank nullity theorem (statement only) and examples. 	

Course Code ASPUSMTP02 Semester II Practical Paper I – Calculus II					
Sr.No.	Practicals	L	Cr		
		30	01		
1.	Application based examples of Archimedean property, intervals,				
	nieghbourhood. Consequences of l.u.b axiom, infimum and supremum				
	of sets.				
2.	Calculating limts of sequences, Cauchy sequences, monotone				
	sequences.				
3.	Calculating limit of series, Convergence tests.				
4.	Miscellaneous Theoretical Questions based on full paper.				

Course Code ASPUSMTP02 Semester II Practical Paper II – Algebra II					
Sr No	Prostingle	L	Cr		
SI.NO. Practicals	Fracticals	30	01		
1.	Solving homogeneous system of m equations in n unknowns by				
	elimination for $(m,n)=(1,2),(1,3),(2,2),2,3),(3,3)$, row echelon form.				
	Solving system Ax = b by Gauss elimination, Solutions of system of				
	linear Equations.				
2.	Examples of Vector spaces, Subspaces				
3.	Linear span of an non-empty subset of a vector space, Basis and				
	Dimension of Vector Space				
4.	Examples of Linear Transformation, Computing Kernel, Image of a				
	linear map, Verifying Rank Nullity Theorem				
5.	Miscellaneous Theoretical Questions based on full paper				

Reference Books

- 1. R.R.Goldberg, Methods of Real Analysis, Oxford and IBH, 1964.
- 2. James Stewart, Calculus, Third Edition, Brooks/ Cole Publishing company, 1994.
- 3. T.M.Apostol, Calculus, Vol I, Wiley And Sons (Asia) Pte. Ltd.
- 4. Richard Courant- Fritz John, A Introduction to Calculus and Analysis, Volume-I, Springer.
- 5. Ajit Kumar- S.Kumaresan, A Basic course in Real Analysis, CRC Press, 2014.
- 6. Ghorpade, Sudhir R, -Limaye, Balmohan V, A course in Calculus and Real Analysis,

Springer International Ltd, 2000.

- 7. K.G. Binmore, Mathematical Analysis, Cambridge University Press, 1982.
- 8. G.B.Thomas, Calculus, 12 th Edition 2009
- 9. David M. Burton, Elementary Number Theory, Seventh Edition, McGraw
- Hill Education (India) Private Ltd.
- 10. Norman L.
- 11. R. G. Bartle- D. R. Sherbert, Introduction to Real Analysis, John Wiley & Sons, 1994.
- 12. Serge Lang, Introduction to Linear Algebra, Second edition Springer.
- 13. S. Kumaresan, Linear Algebra, Prentice Hall of India Pvt limited.
- 14. K.Hoffmann and R. Kunze Linear Algebra, Tata MacGraw Hill, New Delhi, 1971
- 15. Gilbert Strang, Linear Algebra and it's Applications, International Student Edition.
- 16. L. Smith, Linear Algebra, Springer Verlang
- 17. A. RamchandranRao, P. Bhimashankaran; Linear Algebra Tata Mac Graw Hill.

Evaluation Pattern

External evaluation: Internal evaluation (70:30)

Theory:-External evaluation (70 Marks) Question Paper Pattern

Time: 2.5 hours

No.	Question Pattern	Marks
Q.1	Fill in the blanks by choosing appropriate options (5 MCQs)	10
Q.2	a) Long Answer Questions (based on Unit I)	15
	b) Short Answer Questions (based on Unit I)	15
Q.3	a) Long Answer Questions (based on Unit II)	15
	b) Short Answer Questions (based on Unit II)	
Q.4	a) Long Answer Questions (based on Unit III)	15
	b) Short Answer Questions (based on Unit III)	
Q.5	b) Long Answer Question (based on Unit I, II & III)	15
Total		70

Theory:-Internal evaluation (30 Marks)

Description	Marks
Test	10
Assignment	10
Overall Conductance	10
Total	30

Paper pattern for each course : ASPUSMT101, ASPUSMT102 and ASPUSMT201, ASPUSMT202

Practical:-Internal evaluation (40 Marks) Question Paper Pattern

No.	Question Pattern	Marks
Q.1	Fill in the blanks by choosing appropriate options (8 MCQs)	24
Q.2	Long Answer Questions (based on Unit I)	16
	Performance in Regular Practical's	05
	Viva	05
Total		50

Expected Learning Outcomes

(Programme Outcomes, Programme Specific Outcomes, Course Outcomes)

B.Sc. Mathematics

Programme Outcomes

PO1. Acquires the ability to understand and analyze the problems.

- PO2. Develops the skill to think critically on abstract concept of mathematics
- **PO3.** Acquire the ability to think independently paving way for lifelong learning.
- PO4. Analyses the situation, make a mathematical problem and find its solution.
- **PO5.** Enhance logical reasoning skills, arithmetic skills, aptitude skills, communication skills, self confidence for better employability.
- PO6. Formulates and develops mathematical arguments in logical manner.
- **PO7.** Provide a systematic understanding of the concepts and theories of mathematical and computing their applications in the real world.

Programme Specific Outcomes: (PSO)s of B.Sc. Mathematics:

PSO 1. Critically evaluation of ideas and arguments by collection relevant information about the units for study.

PSO 2. Identify problems and independently propose solutions using creative approaches, acquired through interdisciplinary experiences, and a depth and breadth of knowledge/expertise in the field.

PSO 3. Students will be able to apply fundamental mathematical tools (statistics, calculus) and physical principles (physics, chemistry) to the analysis of relevant biological situations.

PSO4. Student will able to solve mathematical argument and proofs to solve problems and to promote understanding, to apply mathematical knowledge to a career related to mathematical science.

Course Outcomes of B.Sc. Mathematics

After completion of course following learning outcomes are expected.

Students will learn and understand the syllabus.